바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN2233-4203
  • E-ISSN2093-8950
Search Word: Ginsenoside Rc, Search Result: 3
1
So-Young Park(Kyungpook National University) ; Ji-Hyeon Jeon(Kyungpook National University) ; Su-Nyeong Jang(Kyungpook National University) ; Im-Sook Song(Kyungpook National University) ; Kwang-Hyeon Liu(Kyungpook National University) 2021, Vol.12, No.2, pp.53-58 https://doi.org/10.5478/MSL.2021.12.2.53
초록보기
Abstract

Previous in vitro studies have demonstrated that ginsenoside Rc inhibits UGT1A9, but there are no available data to indicate that ginsenoside Rc inhibits UGT1A9 in vivo. The effect of single and repeated intravenous injection of ginsenoside Rc was evaluated on the pharmacokinetics of mycophenolic acid. After injection of ginsenoside Rc (5 mg/kg for one day or 3 mg/kg for five days), 2-mg mycophenolic acid was intravenously injected, and the pharmacokinetics of mycophenolic acid and mycophenolic acid-β-glucuronide were determined. Concentrations of mycophenolic acid and its metabolite from rat plasma were analyzed using a liquid chromatography-triple quadrupole mass spectrometry. Single or repeated pretreatment with ginse-noside Rc had no significant effects on the pharmacokinetics of mycophenolic acid (P > 0.05): The mean difference in maximum plasma concentration (C max ) and area under the concentration-time curve (AUC inf ) were within 0.83- and 0.62-fold, respectively, compared with those in the absence of the ginsenoside Rc. These results indicate that ginsenoside Rc has a negligible effect on the disposition of mycophenolic acid in vivo despite in vitro findings indicating that ginsenoside Rc is a selective UGT1A9 inhibitor. As a result, ginsenoside Rc has little possibility of interacting with drugs that are metabolized by UGT1A9, including mycophenolic acid.

2
Jung Jae Jo(Kyungpook National University) ; Riya Shrestha(Kyungpook National University) ; Sangkyu Lee(Kyungpook National University) 2016, Vol.7, No.4, pp.106-110 https://doi.org/10.5478/MSL.2016.7.4.106
초록보기
Abstract

Ginseng, a traditional herbal drug, has been used in Eastern Asia for more than 2000 years. Various ginsenosides, which are the major bioactive components of ginseng products, have been shown to exert numerous beneficial effects on the human body when co-administered with drugs. However, this may give rise to ginsenoside-drug interactions, which is an important research consideration. In this study, acassette assay was performed the inhibitory effects of 12 ginsenosides on seven cytochrome P450 (CYP) isoforms in human liver microsomes (HLMs) using LC-MS/MS to predict the herb-drug interaction. After incubation of the 12 ginsenosides with seven cocktail CYP probes, the generated specific metabolites were quantified by LC-MS/MS to determine their activities. Ginsenoside Rb1 and F2 showed strong selective inhibitory effect on CYP2C9-catalyzed diclofenac 4′-hydroxylation and CYP2B6-catalyzed bupropion hydroxylation, respectively. Ginsenosides Rd showed weak inhibitory effect on the activities of CYP2B6, 2C9, 2C19, 2D6, 3A4, and compound K, while ginsenoside Rg3 showed weak inhibitory effects on CYP2B6. Other ginsenosides, Rc, Rf, Rg1, Rh1, Rf, and Re did not show significant inhibitory effects on the activities of the seven CYPs in HLM. Owing to the poor absorption of ginsenosides after oral administration in vivo, ginsenosides may not have significant side effects caused by interaction with other drugs.

3
Jung Jae Jo(Kyungpook National University) ; Pil Joung Cho(Kyungpook National University) ; Sangkyu Lee(Kyungpook National University) 2018, Vol.9, No.2, pp.41-45 https://doi.org/10.5478/MSL.2018.9.2.41
초록보기
Abstract

Ginseng (Panax ginseng Meyer) has been used as traditional herbal drug in Asian countries. Ginsenosides are major components having pharmacological and biological efficacy like anti-inflammatory, anti-diabetic and anti-tumor effects. To con- trol the quality of the components in diverse ginseng products, we developed a new quantitative method using LC-MS/MS for 13 ginsenosides; Rb1, Rb2, Rc, Rd, Re, Rf, 20(S)-Rh1, 20(S)-Rh2, Rg1, 20(S)-Rg3, F1, F2, and compound K. This method was successfully validated for linearity, precision, and accuracy. This quantification method applied in four representative ginseng products; fresh ginseng powder, white ginseng powder, red ginseng extract powder, and red ginseng extract. Here the amounts of the 13 ginsenosides in the various type of ginseng samples could be analyzed simultaneously and expected to be suitable for quality control of ginseng products.

Mass Spectrometry Letters