바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN2233-4203
  • E-ISSN2093-8950

High-Throughput Active Compound Discovery using Correlations between Activity and Mass Profiles

Mass Spectrometry Letters, (P)2233-4203; (E)2093-8950
2010, v.1 no.1, pp.13-16
https://doi.org/10.5478/MSL.2010.1.1.013
Kyu Hwan Park (Korea Basic Science Institute)
Kyo Joong Yoon (Korea Basic Science Institute)
Kyung-Hoon Kwon (Korea Basic Science Institute)
Hyun Sik Kim (Korea Basic Science Institute)
  • Downloaded
  • Viewed

Abstract

The active components in a plant extract can be represented as mass profiles. We introduce here a new, multi-compounddiscovery method known as Scaling of Correlations between Activity and Mass Profiles (SCAMP). In this method, a correlationcoefficient is used to quantify similarities between the extract activity and mass profiles. The method was evaluated byfirst measuring the anti-oxidation activity of eleven fractions of an Astragali Radix extract using DPPH assays. Next, 15 T Fouriertransformion cyclotron resonance (FT-ICR) MS was employed to generate mass profiles of the eleven fractions. A comparison ofcorrelation coefficients indicated two compounds at m/z 285.076 and 286.076 that were strong antioxidants. Principal componentanalyses of these profiles yielded the same result. FT-ICR MS, which offers a mass resolving power of 500,000, was used todiscern isotopic fine structures and indicated that the molecular formula corresponding to the peak at m/z 285.076 was C16H13O5. SCAMP in combination with high-resolution MS can be applied to any type of mixture to study pharmacological activity and is apowerful tool for active compound discovery in plant extract studies.

Submission Date
2010-11-15
Revised Date
2010-11-24
Accepted Date
2010-11-25

Reference

1

Harvey, A. (2000). . Drug Discovery Today, 5, 294-.

2

Strege, M. A. (1999). . J. Chromatogr. B Biomed. Sci. Appl, 725, 67-.

3

Brown, S. C. (2005). . Mass Spectrom. Rev, 24, 223-.

4

Miura, D. (2010). . Anal. Chem, 82, 5887-.

5

Cooper, H. J. (2001). . J. Agric. Food Chem, 49, 5710-.

6

Senorans, F. J. (2000). . J. Chromatogr. A, 870, 491-.

7

Wang, Y. (2008). . Med. Biol. Eng. Comput, 46, 605-.

8

Aggio, R. (2010). . Bioinfomatics, , -.

9

Anjum, T. (2010). . Nat. Prod. Res, 24, 1783-.

10

Toda, S. (1999). . J. Ethnopharmacol, 68, 331-.

11

Xuejiang, W. (2001). . Biol. Pharm. Bull, 24, 558-.

12

Kitts, D. D. (2000). . Mol. Cell. Biochem, 203, 1-.

13

http: //www.nist.gov/physlab/data/comp.cfm. http://www.nist.gov/physlab/data/comp.cfm.

14

The R foundation for Statistical Computing. http://www.rproject.org/.

15

Kono, Y. (1995). . Biochem. J, 312, 947-.

16

Ozgen, M. (2006). . J. Agric. Food Chem, 54, 1151-.

17

Huang, W. H. (2006). . Biotechnol. Biochem, 70, 2371-.

Mass Spectrometry Letters