Article Detail

Home > Article Detail
  • P-ISSN 2233-4203
  • E-ISSN 2093-8950

Study of CO 2 + (CO 2 ) n Cluster in a Paul Ion Trap

Mass Spectrometry Letters / Mass Spectrometry Letters, (P)2233-4203; (E)2093-8950
2019, v.10 no.1, pp.27-31
https://doi.org/10.5478/MSL.2019.10.1.27
Karimi L. (Department of Chemistry, University of Zanjan)
Sadat Kiai S.M. (Nuclear Science and Technology Research Institute (NSTR))
babazaheh A. R. (Department of Chemistry, University of Zanjan)
Elahi M. (Nuclear Science and Technology Research Institute (NSTR))
Shafaei S. R. (Nuclear Science and Technology Research Institute (NSTR))
  • Downloaded
  • Viewed

Abstract

In this article, the properties of CO 2 + (CO 2 ) n clusters in a Paul ion trap have been investigated using mass-selective instability mode which conducted by chosen precursor ions, mainly Ar + and CO 2 + produced by a mixture of Ar and CO 2 . Expo- sure of CO 2 + ions to CO 2 molecules, lead to the formation of CO 2 + (CO 2 ) n clusters. Here, Ar gas react as a buffer gas and lead to form CO 2 + (CO 2 ) n cluster by collisional effect.

keywords
Paul ion trap, ion clusters, time of flight, buffer gas, collisional effect


Reference

1

March, R. E.. (1997). . J. Mass Spectrom, 32, 351-.

2

S. M. Sadat Kiai. (2015). Investigation of Ne and He Buffer Gases Cooled Ar + Ion Clouds in a Paul Ion Trap. Mass Spectrometry Letters, 6(4), 112-115. http://dx.doi.org/10.5478/MSL.2015.6.4.112.

3

Kalkan, Y. (2015). . J. Instrum, 10, 07004-.

4

Heinbuch, S. (2006). . J. Chem. Phys, 125, 154316-.

5

Johnston, R.. (2002). Atomic and molecular clusters:Taylor and Francis.

6

Wang, Y.-S. (2003). . J. Phys. Chem. A, 107, 4217-.

7

Brédy, R. (2009). . J. Phys. B, 42, 154023-.

8

Pollack, S. (1996). . Chem. Phys. Lett, 256, 101-.

9

Jovan Jose, K. V. (2008). . J. Chem. Phys, 128, 124310-.

10

Lovejoy, E. (2000). . J. Phys. Chem. A, 104, 10280-.

11

Brédy, R. (2009). . J. Phys. B, 42, 154023-.

12

Brown, L. S. (1986). . Rev. Mod. Phys, 58, 233-.

13

Paul, W.. (1990). . Rev. Mod. Phys, 62, 531-.

14

Bernhardt, T. M.. (2005). . Int. J. Mass Spectrom, 243, 1-.

15

Adersen, J. U. (2003). . Hyperfine Interact, 146, 283-.

16

Diner, A. (2004). . Phys. Rev. Lett., 93, 063402-.

17

Schmidt, H. T. (2001). . Nucl. Instrum. Methods Phys. Res. B, 173, 523-.

18

Overlay, O. (1982). . Radiat. Phys. Chem, 20, 253-.

19

Gerlich, D.. (2008). The Production and Study of Ultra-Cold Molecular Ions:world scientific publishing Ltd.

20

Kiyania, A. (2011). . J. fusion energy, 30, 291-.

21

Colby, S. M. (1994). Time-of-Flight Mass Spectrometry and its Applications:Elsevier.

22

Anicich, V. G.. (1993). . J. Phys. Chem, 22, 1469-.

23

Rashit, A. B. (1979). . Naturforsch, 34a, 1410-.

24

Castleman, A. W. (2009). . J. Phys. Chem. C, 113, 2664-.

Submission Date
2018-09-28
Revised Date
2018-11-10
Accepted Date
2018-11-25
상단으로 이동

Mass Spectrometry Letters