Article Detail

Home > Article Detail
  • P-ISSN 2233-4203
  • E-ISSN 2093-8950

Recent Advances of MALDI-Mass Spectrometry Imaging in Cancer Research

Mass Spectrometry Letters / Mass Spectrometry Letters, (P)2233-4203; (E)2093-8950
2019, v.10 no.3, pp.71-78
https://doi.org/10.5478/MSL.2019.10.3.71
Jung Joohee (Duksung Women’s University)
  • Downloaded
  • Viewed

Abstract

For several decades, cancer has been the primary cause of mortality worldwide. New diagnosis and regimens have been developed to improve the chemotherapeutic efficacy and the quality of life of the patients. However, cancer tis-sues are complex and difficult to assess. Understanding the various properties of the tumor and its environment is crucial for cancer and pharmaceutical research. Several analytical techniques have been providing new insights into cancer research. Recently, matrix-assisted laser desorption ionization (MALDI)-mass spectrometry imaging (MSI), an advanced analytical technique, has been applied to translational research. Proteomic and lipidomic profiling obtained by MALDI-MSI has been critical for biomarker discovery and for monitoring heterogenous tumor tissues. In this review, we discuss technical approaches, benefits and recent applications of MALDI-MSI as a valuable tool in cancer research, namely for diagnosis, therapy, prognosis.

keywords
MALDI imaging, cancer, biomarker, diagnosis


Reference

1

Zeeshan, R. (2017). . Bosn. J. Basic. Med. Sci, 17, 172-.

2

Manoochehri Khoshinani, H. (2016). . Cancer Invest, 34, 536-.

3

Corbet, C. (2017). . Nat. Rev. Cancer, 17, 577-.

4

Schwartz, L. (2017). . Anti-Cancer Agents Med. Chem, 17, 164-.

5

Wu, T. (2017). . Cancer Lett, 387, 61-.

6

Venkatesan, S. (2016). . Am. Soc. Clin. Oncol. Educ. Book, 35, e141-.

7

Gupta, R. G. (2017). . Mol. Cancer Res, 15, 1127-.

8

Dietz, S. (2019). . Oncotarget, 10, 1549-.

9

Morris, L. G. T. (2016). . Oncotarget, 7, 10051-.

10

Gemoll, T. (2011). . Mol. Med. Rep, 4, 1045-.

11

Škrášková, K. (2013). . J. Chromatogr. A, 1319, 1-.

12

Shimma, S. (2014). . Mass Spectrom. (Tokyo), 3, S0029-.

13

Kriegsmann, M. (2016). . Mol. Cell. Proteomics, 15, 3081-.

14

Fonville, J. M. (2012). . Anal. Chem, 84, 1310-.

15

Boskamp, T. (2017). . Biochim. Biophys. Acta. Proteins Proteom, 1865, 916-.

16

Li, L. (2018). . Med. Sci. Monit, 24, 3050-.

17

Smith, N.R. (2014). . J. Pathol, 232, 190-.

18

Huang, K. T. (2017). . Adv. Cancer Res, 134, 257-.

19

Fernandez, R. (2014). . J. Am. Soc. Mass Spectrom, 25, 1237-.

20

Calligaris, D. (2015). . Proc. Natl. Acad. Sci. U.S.A, 112, 9978-.

21

Wojakowska, A. (2018). . Endokrynologia Polska, 69, 2-.

22

Pietrowska, M. (2017). . Biochim. Biophys. Acta. Proteins Proteom, 1865, 837-.

23

Mosele, N. (2017). . Methods Mol. Biol, 1618, 37-.

24

Schwartz, S. A. (2005). . Cancer Res, 65, 7674-.

25

Kriegsmann, J. (2019). . Proteom. Clin. Appl, 13, e1800045-.

26

Stella, M. (2019). . J. Proteom, 191, 38-.

27

Eberlin, L. S. (2013). . Proc. Natl. Acad. Sci. U.S.A, 110, 1611-.

28

Patterson, N. H. (2016). . Sci. Rep, 6, 36814-.

29

Guran, R. (2017). . Plos One, 12, e0189305-.

30

Bednarczyk, K. (2019). . J. Mol. Histol, 50, 1-.

31

Ros-Mazurczyk, M. (2017). . Lung cancer, 112, 69-.

32

Scott, D. A. (2019). . Proteom. Clin. Appl, 13, e1800014-.

33

Paine, M. R. L. (2019). . J. Sci. Rep, 9, 2205-.

34

Schwamborn, K. (2019). . Proteom. Clin. Appl, 13, e1800064-.

35

Hosokawa, Y. (2017). . Plos One, 12, e0183724-.

36

Agar, N. Y. (2010). . Anal. Chem, 82, 2621-.

37

Clark, A. R. (2018). . J. Neuro-oncol, 140, 269-.

38

Uchiyama, Y. (2014). . Anal. Bioanal. Chem, 406, 1307-.

39

Gustafsson, J. O. (2011). . Int. J. Mol. Sci, 12, 773-.

40

Klein, O. (2019). . Proteom. Clin. Appl, 13, e1700181-.

41

Hoffmann, F. (2019). . Proteom. Clin. Appl, 13, e1700173-.

42

Drake, R. R. (2017). . Adv. Cancer Res, 134, 85-.

43

Briggs, M. T. (2017). . Rapid Commun. Mass Spectrom, 31, 825-.

44

Heijs, B. (2016). . Anal. Chem, 88, 7745-.

45

Powers, T. W. (2015). . Biomolecules, 5, 2554-.

46

Everest-Dass, A. V. (2016). . Mol. Cell. Proteom, 15, 3003-.

47

Wang, X. (2017). . Biochim. Biophys. Acta. Proteins Proteom, 1865, 755-.

48

Vanickova, L. (2019). . Int. J. Biol. Macromol, 125, 270-.

49

Yuan, Y. (2017). . Cell Death Dis, 8, e3035-.

50

Xie, X. (2016). . Oncotarget, 7, 59987-.

51

Chi, L. H. (2017). . Sci. Rep, 7, 9031-.

52

Gemoll, T. (2015). . Oncotarget, 6, 43869-.

53

Rebours, V. (2014). . Pancreatology, 14, 117-.

54

Gruner, B. M. (2012). . Plos One, 7, e39424-.

55

de Vega, R. G. (2018). . Anal. Bioanal. Chem, 410, 913-.

56

Perrotti, F. (2016). . Int. J. Mol. Sci, 17, 1992-.

57

Thomas, A. (2013). . Anal. Chem, 85, 2860-.

58

McLean, J. A. (2007). . J. Mass Spectrom, 42, 1099-.

59

Smith, A. (2017). . Int. J. Mol. Sci, 18, 2588-.

60

Cheng, C. C. (2012). . Disease Markers, 32, 21-.

61

Elsner, M. (2012). . J. Proteom, 75, 4693-.

62

Choi, J. H. (2012). . Histol. Histopathol, 27, 1439-.

63

Meding, S. (2012). . J. Proteome Res, 11, 1996-.

64

Balluff, B. (2010). . J. Proteome Res, 9, 6317-.

65

Rauser, S. (2010). . J. Proteome Res, 9, 1854-.

66

Balluff, B. (2015). . J. Pathol, 235, 3-.

67

Pote, N. (2013). . Hepatology, 58, 983-.

68

Schwartz, M. (2015). . Anal. Bioanal. Chem, 407, 2255-.

69

Kawashima, M. (2013). . Cancer Sci, 104, 1372-.

70

Goto, T. (2014). . Plos One, 9, e90242-.

71

Ide, Y. (2013). . Plos One, 8, e61204-.

72

Kurabe, N. (2013). . Cancer Sci, 104, 1295-.

73

Morita, Y. (2013). . J. Hepatol, 59, 292-.

74

Uehara, T. (2016). . Annals Surg. Oncol, 23, S206-.

75

Guo, S. (2015). . Anal. Chem, 87, 5860-.

76

Hall, Z. (2016). . Cancer Res, 76, 4608-.

77

Cazares, L. H. (2009). . J. Clin. Cancer Res, 15, 5541-.

78

Pallua, J. D. (2013). . J. Proteom, 91, 500-.

79

Steurer, S. (2013). . Int. J. Cancer, 133, 920-.

80

Demichelis, F. (2007). . Oncogene, 26, 4596-.

81

Attard, G. (2008). . Oncogene, 27, 253-.

82

Giordano, S. (2016). . Sci. Rep, 6, 39284-.

83

Cesca, M. (2016). . Mol. Cancer Ther, 15, 125-.

84

Munteanu, B. (2014). . Anal. Chem, 86, 4642-.

85

Hinsenkamp, I. (2016). . Neoplasia, 18, 500-.

86

Liu, X. (2018). . J. Am. Soc. Mass Spectrom, 29, 516-.

87

LaBonia, G. J. (2016). . Proteomics, 16, 1814-.

88

Fuchs, K. (2018). . J. Control. Release, 269, 128-.

89

Gruner, B. M. (2016). . Mol. Cancer Ther, 15, 1145-.

90

권호정. (2015). Drug compound characterization by mass spectrometry imaging in cancer tissue. Archives of Pharmacal Research, 38(9), 1718-1727.

91

Feist, P. E. (2017). . Anal. Chem, 89, 2773-.

92

Yasunaga, M. (2013). . Sci. Rep, 3, 3050-.

93

Randall, E. C. (2018). . Nat. Commun, 9, 4904-.

94

Salphati, L. (2016). . Drug Metab. Dispos, 44, 1881-.

95

Aikawa, H. (2016). . Sci. Rep, 6, 23749-.

96

Liu, X. (2016). . Sci. Rep, 6, 38507-.

97

Arendowski, A. (2018). . Bioanalysis, 10, 83-.

98

Lee, I. K. (2004). . J. Breast Cancer, 7, 154-.

99

Schulz, S. (2019). . Curr. Opin. Biotechnol, 55, 51-.

100

Ogrinc Potočnik, N. (2015). . Rapid Commun. Mass Spectrom, 29, 2195-.

101

Solon, E. G. (2012). . Chem. Res. Toxicol, 25, 543-.

102

Solon, E. G. (2010). . AAPS J, 12, 11-.

Submission Date
2019-06-21
Revised Date
2019-07-03
Accepted Date
2019-07-05
상단으로 이동

Mass Spectrometry Letters