Article Detail

Home > Article Detail
  • P-ISSN 2233-4203
  • E-ISSN 2093-8950

Electron Capture Dissociation Mass Spectrometry for Gaseous Protonated Melittin Ions and Its Single Amino Acid Substituted Variants

Mass Spectrometry Letters / Mass Spectrometry Letters, (P)2233-4203; (E)2093-8950
2019, v.10 no.4, pp.117-122
https://doi.org/10.5478/MSL.2019.10.4.117
Yu Seonghyun (Sogang University)
Jang Hwa-yong (Sogang University)
Oh Han Bin (Sogang University)
  • Downloaded
  • Viewed

Abstract

This study demonstrated the sensitivity of electron capture dissociation mass spectrometry (ECD-MS) to probe sub- tle conformational changes in gaseous melittin ions induced by the substitution of an amino acid. ECD-MS was performed for triply and quadruply-protonated melittin and its variants obtained by a single amino acid substitution, namely, D-Pro14, Pro14Ala, and Leu13Ala. Although native triply-protonted melittin showed only a few peptide backbone cleavage products, the D-Pro14 and Pro14Ala variants exhibited extensive backbone fragments, suggesting the occurrence of a significant structural or conformational change induced by a single amino acid substitution at Pro14. On the contrary, the substitution at Leu13, namely Leu13Ala (+3), did not cause significant changes in the ECD backbone fragmentation pattern. Thus, the sensitivity of ECD-MS is demonstrated to be good enough to probe the aforementioned conformational change in melittin.

keywords
Electron Capture Dissociation, Melittin, Amino Acid Substitution, Chiral Inversion, Mass Spectrometry


Reference

1

Ganem, B.. (1991). . J. Am. Chem. Soc, 113, 6294-.

2

Loo, J. A.. (1997). . Mass Spectrom. Rev, 16, 1-.

3

Oh, H. B.. (2002). . Proc. Natl. Acad. Sci. U. S. A, 99, 15863-.

4

Adams, C. M.. (2004). . J. Am. Soc. Mass Spectrom, 15, 1087-.

5

Breuker, K.. (2008). . Proc. Natl. Acad. Sci. U. S. A, 105, 18145-.

6

Schennach, M.. (2016). . J. Am. Soc. Mass Spectrom, 27, 1079-.

7

Wyttenbach, T.. (2003). . Top. Curr. Chem, 225, 207-.

8

Koeniger, S. L.. (2006). . J. Am. Chem. Soc, 128, 11713-.

9

Ko, J. Y.. (2011). . J. Phys. Chem. A, 115, 14215-.

10

Winger, B. E.. (1992). . J. Am. Chem. Soc, 114, 5897-.

11

McLafferty, F. W.. (1998). . J. Am. Chem. Soc, 120, 4732-.

12

Lee, S .Y.. (2006). . J. Am. Soc. Mass Spectrom, 17, 536-.

13

Lee, S. Y.. (2006). . Rapid Commun. Mass Spectrom, 20, 3167-.

14

Lee, S. Y.. (2009). . Int. J. Mass Spectrom, 279, 47-.

15

Snow, C. D.. (2002). . J. Am. Chem. Soc, 124, 14548-.

16

Carnevail, P.. (2003). . J. Am. Chem. Soc, 125, 14244-.

17

Patriksson, A.. (2007). . J. Phys. Chem. B, 111, 13147-.

18

Kaltashov I. A.. (1997). . Prot. Struct. Func. Gen, 27, 165-.

19

Bazzo, R.. (1988). . Eur. J. Biochem, 173, 139-.

20

Gerig, J. T.. (2004). . Biophys. J, 86, 3166-.

21

Roccatano, D.. (2005). . Prot. Sci, 14, 2582-.

22

Terra, R. M. S.. (2007). . Mol. Grap. Mod, 25, 767-.

23

Florance, H. V.. (2011). . Analyst, 136, 3446-3452.

24

Iavarone, A. T.. (2000). . J. Am. Soc. Mass Spectrom, 11, 976-985.

25

Zubarev, R. A.. (2000). . Anal. Chem, 72, 563-573.

26

Meot-Ner, M. J.. (1983). . J. Am. Chem. Soc, 105, 4906-4911.

27

Shi, L.. (2015). . J. Am. Chem. Soc, 137, 8680-.

28

Hewish, D. R.. (2002). . J. Prot. Chem, 21, 243-.

Submission Date
2019-12-14
Revised Date
2019-12-24
Accepted Date
2019-12-24
상단으로 이동

Mass Spectrometry Letters