Article Detail

Home > Article Detail
  • P-ISSN 2233-4203
  • E-ISSN 2093-8950

Hyperthermal Collisions of Bromotoluene Molecular Cations at Self-Assembled Monolayer Surfaces

Mass Spectrometry Letters / Mass Spectrometry Letters, (P)2233-4203; (E)2093-8950
2011, v.2 no.1, pp.24-27
https://doi.org/10.5478/MSL.2011.2.1.024
Jo Sung-Chan (Samsung Electronic Co., Ltd.)
Augusti Rodinei (Federal University of Minas Gerais)
Cooks R.Graham (Purdue University)
  • Downloaded
  • Viewed

Abstract

Hyperthermal ion/surface collisions of bromotoluene molecular ions were studied using perfluorinated (F-SAM) andhydroxyl-terminated (OH-SAM) self-assembled monolayer surfaces in a tandem mass spectrometer with BEEQ geometry. Theisomers were differentiated by ion abundance ratios taken from surface-induced dissociation (SID). The dissociation rate followedthe order of ortho>meta>para isomers. The peak abundance ratio of m/z 51 to m/z 65 showed the best result to discern theisomers, while the other ratios would effectively serve the same purpose as well. A dissociation channel leading to tolylium ionwas suggested to be responsible for the pronounced isomeric differentiability. The capability of SID to provide high-energy activationwith narrow internal energy distribution may have channeled the reaction into the specific dissociation pathway, also facilitatingsmall difference in reaction rates to be effective in the spectral time window of this experiment. All the molecular ions experiencedreactive collisions with the F-SAM surface leading to transhalogenation products, where a fluorine atom from the surface replacesthe bromine of the projectile. This reactive collision was dependant on the laboratory collision energy occurring in ca. 40~75 eV range.

keywords
Ion/surface Collisions, Surface-induced Dissociation (SID), Bromotoluene, Isomer, Self-assembled Monolayer (SAM), Hyperthermal Energy


Reference

1

Horning, S. R.. (1989). . Biomed. Environ. Mass Spectrom, 18, 920-.

2

McLafferty, F. W.. (1962). . Anal. Chem, 34, 16-.

3

Yeo, N. H.. (1970). . Chem. Commun, 886, -.

4

Proctor, C. J.. (1983). . Org. Mass Spectrom, 18, 193-.

5

Bass, L. M.. (1982). . Org. Mass Spectrom, 17, 229-.

6

Kuck, D.. (1990). . Mass Spec. Reviews, 9, 187-.

7

Shin, S. K.. (1996). . Int. J. Mass Spectrom. Ion Processes, 157/158, 345-.

8

Kim, B.. (1997). S. K. J. Chem. Phys. 1997. J. Chem. Phys, 106, 1411-.

9

Lifshitz, C. (1991). . J. Phys. Chem, 95, 1667-.

10

Dunbar, R. C.. (1991). . J. Chem. Phys, 94, 3542-.

11

Dunbar, R. C.. (1988). . J. Phys. Chem, 92, 6935-.

12

Lin, C. Y.. (1994). . J. Phys. Chem, 98, 1369-.

13

Olesik, S.. (1989). . Org. Mass Spectrom, 24, 1008-.

14

Mabud, Md. A.. (1987). . J. Am. Chem. Soc, 109, 7597-.

15

Hayward, M. J.. (1988). . J. Am. Chem. Soc, 110, 1343-.

16

Mabud, Md.. (1987). . Org. Mass Spectrom, 22, 418-.

17

Vincenti, M.. (1988). . Org. Mass Spectrom, 23, 585-.

18

Jo, S.-C., Augusti, R., Green, J., Cooks, R. G.

19

Shen, J. W. (1999). . J. Mass Spectrom, 34, 354-.

20

Denault, J. W.. (2000). . Anal. Chem, 72, 5798-.

Submission Date
2011-03-07
Revised Date
2011-03-13
Accepted Date
2011-03-13
상단으로 이동

Mass Spectrometry Letters