Article Detail

Home > Article Detail
  • P-ISSN 2233-4203
  • E-ISSN 2093-8950

Mass spectrometric studies of competitive binding of C60 and C70 to mesosubstituted porphyrins

Mass Spectrometry Letters / Mass Spectrometry Letters, (P)2233-4203; (E)2093-8950
2011, v.2 no.2, pp.49-52
https://doi.org/10.5478/MSL.2011.2.2.049
Jung Sunghan (Pohang University of Science and Technology)
Shin Seung Koo (Pohang University of Science and Technology)
  • Downloaded
  • Viewed

Abstract

Competitive binding of C60 and C70 to meso-substituted porphyrins was studied by mass spectrometry (MS). Electrosprayionization MS was employed to acquire the mass spectra of 1 : 1 porphyrin–fullerene complexes formed in a mixture of mesosubstitutedporphyrin and fullerite to determine the ratio of complexes between C60 and C70. Matrix-free laser desorption ionizationMS was used to obtain the mass spectra of fullerite to measure the mole fraction of C60 and C70. The binding constant ratio (K70/K60)was determined from the mass spectral data. The difference in standard Gibbs free energy change, Δ(ΔGo)70–60, for the competitivebinding of C60 and C70 was calculated from K70/K60. Of the five porphyrins, tetraphenyl, tetra(4-pyridyl), tetra(4-carboxyphenyl),tetra(3,5-di-tert-butylphenyl), and tetra(pentafluorophenyl) porphyrins, the first three non-bulky porphyrins yield negative valuesof Δ(ΔGo)70−60, whereas the other two bulky porphyrins result in positive values of Δ(ΔGo)70−60. This result indicates that C70binding to porphyrin is thermodynamically favored over C60 binding in non-bulky porphyrins, but disfavored in bulky ones. Italso suggests that the binding mode of C70 is different between non-bulky and bulky porphyrins, which is in line with previousexperimental findings of the “side-on” binding to non-bulky porphyrins and the C60-like “end-on” binding to bulky porphyrins.

keywords
Protonated porphyrin, Fullerene, Porphyrin−fullerene complex, Binding constant


Reference

1

Boyd, P. D. W.. (2005). . Acc. Chem. Res, 38, 235-.

2

Bottari, G.. (2010). . Chem. Rev, 110, 6768-.

3

Xiao, J.. (1994). . J. Am. Chem. Soc, 116, 9341-.

4

Shoji, Y.. (2004). . J. Am. Chem. Soc, 126, 6570-.

5

Hasobe, T.. (2005). . J. Am. Chem. Soc, 127, 1216-.

6

Hosseini, A.. (2006). . J. Am. Chem. Soc, 128, 15903-.

7

Zheng, J. -Y.. (2001). K. Angew. Chem. Int. Ed. 2001. Angew. Chem. Int. Ed, 40, 1858-.

8

Dudi , M. (2004). . New J. Chem, 28, 85-.

9

Marois, J.-S.. (2008). . Org. Lett, 10, 33-.

10

Boyd, P. D. W.. (1999). . J. Am. Chem. Soc, 121, 10487-.

11

Bhattacharya, S. (2006). . Chem. Phys. Lett, 430, 435-.

12

Hong, E. S.. (2010). . J. Am. Soc. Mass Spectrom, 21, 1245-.

13

Jung, S. (2010). . J. Phys. Chem. A, 114, 11376-.

14

Cristadoro, A.. (2008). . Rapid Commun. Mass Spectrom, 22, 2463-.

15

Lichtenberger, D. L. (1991). . Lamb, L. D. Chem. Phys. Lett, 176, 203-.

16

Lichtenberger, D. L.. (1992). . Chem. Phys. Lett, 198, 454-.

17

McQuarrie, D. A.. (2000). Statistical Mechanics:University Science Books.

18

Slanina, Z.. (2002). . Phys. Solid State, 44, 548-.

Submission Date
2011-05-19
Revised Date
2011-06-07
Accepted Date
2011-06-08
상단으로 이동

Mass Spectrometry Letters