Article Detail

Home > Article Detail
  • P-ISSN 2233-4203
  • E-ISSN 2093-8950

Isotope Measurement of Uranium at Ultratrace Levels Using Multicollector Inductively Coupled Plasma Mass Spectrometry

Mass Spectrometry Letters / Mass Spectrometry Letters, (P)2233-4203; (E)2093-8950
2012, v.3 no.2, pp.54-57
https://doi.org/10.5478/MSL.2012.3.2.54
Oh Seong Y. (Korea Atomic Energy Research Institute)
Lee Seon A. (Korea Atomic Energy Research Institute)
Park Jong-Ho (Korea Atomic Energy Research Institute)
Lee Myungho (Korea Atomic Energy Research Institute)
Song Kyuseok (Korea Atomic Energy Research Institute)
  • Downloaded
  • Viewed

Abstract

Mass spectrometric analysis was carried out using multicollector inductively coupled plasma mass spectrometry(MC-ICP-MS) for the precise and accurate determination of the isotope ratios of ultratrace levels of uranium dissolved in 3%HNO3. We used the certified reference material (CRM) 112-A at a trace level of 100 pg/mL for the uranium isotopic measurement. Multiple collectors were utilized for the simultaneous measurement of uranium isotopes to reduce the signal uncertaintydue to variations in the ion beam intensity over time. Mass bias correction was applied to the measured U isotopes to improve theprecision and accuracy. Furthermore, elemental standard solution with certified values of platinum, iridium, gold, and thalliumdissolved in 3% HNO3 were analyzed to investigate the formation rates of the polyatomic ions of Ir40Ar+, Pt40Ar+, Tl40Ar+,Au40Ar+ for the concentration range of 50–400 pg/mL. Those polyatomic ions have mass-to-charge ratios in the 230–245 m/zregion that it would contribute to the increase of background intensity of uranium, thorium, plutonium, and americium isotopes. The effect of the polyatomic ion interference on uranium isotope measurement has been estimated.

keywords
ICP-MS, Multicollector, Isotope ratio, Uranium, Trace analysis


Reference

1

Baglan, N. (2004). . J. Radioanal. Nucl. Chem, 261, 609-.

2

Jakubowski, N. (2011). . J. Anal. At. Spectrom, 26, 693-.

3

Agarande M. (2001). . Appl. Radiat. Isot, 55, 161-.

4

Hoffmann, D. L. (2007). . Int. J. Mass Spectrom, 264, 97-.

5

Zhang X. Z. (2007). . Spectrochim. Acta B, 62, 1130-.

6

Agarande, M. (2004). . J. Environ. Radioact, 72, 169-.

7

Yang, L. (2009). . Mass Spectrom. Rev, 28, 990-.

8

Tayler, R. N. (2003). . J. Anal. At. Spectrom, 18, 480-.

9

Hoffmann, D. L. (2008). . Int. J. Mass Spectrom, 275, 75-.

10

Pointurier, F. (2008). . J. Anal. At. Spectrom, 23, 94-.

11

Kim, C. S. (2007). . J. Anal. At. Spectrom, 22, 827-.

12

Magara, M. (2002). . J. Nucl. Sci. Technol, 39, 308-.

13

Pointurier, F. (2004). . Appl. Radiat. Isot, 60, 561-.

14

Albarede, F. (2004). . Geochim. Cosmochim. Acta, 68, 2725-.

15

Ciceri, E. (2008). . Talanta, 74, 642-.

16

New Brunswick Laboratory U.S. Department of Energy. http://www.nbl.doe.gov.

Submission Date
2012-05-23
Revised Date
2012-06-20
Accepted Date
2012-06-20
상단으로 이동

Mass Spectrometry Letters