Article Detail

Home > Article Detail
  • P-ISSN 2233-4203
  • E-ISSN 2093-8950

Quantitative Phosphoproteomics of the Human Neural Stem Cell Differentiation into Oligodendrocyte by Mass Spectrometry

Mass Spectrometry Letters / Mass Spectrometry Letters, (P)2233-4203; (E)2093-8950
2012, v.3 no.4, pp.93-100
https://doi.org/10.5478/MSL.2012.3.4.93
Cho Kun (Korea Basic Science Institute)
Kim Jin Young (Korea Basic Science Institute)
Kim Eunmin (Korea Basic Science Institute)
Park Gun Wook (Korea Basic Science Institute)
Kang Tae Wook (Korea Basic Science Institute)
Yoon Jung Hae (Research Institute at Nationwide Childre)
Kim Seung U. (University of British Columbia)
Byun Kyunghee (Gachon University)
Lee Bonghee (Gachon University)
Yoo Jong Shin (Korea Basic Science Institute, Republic of Korea)
  • Downloaded
  • Viewed

Abstract

Cellular processes such as proliferation, differentiation, and adaptation to environmental changes are regulated byprotein phosphorylation. In order to enhance the understanding of molecular dynamics for biological process in detail, it is necessaryto develop sensitive and comprehensive analytical methods for the determination of protein phosphorylation. Neural stemcells hold great promise for neural repair following an injury or disease. In this study, we made differentiated oligodendrocytesfrom human neural stem cells using over-expression of olig2 gene. We confirmed using quantitative phosphoproteome analysisapproach that combines stable isotope labeling by amino acids in cell culture (SILAC) and TiO2 micro-column for phosphopeptideenrichment with MS2 and MS3 mass spectrometry. We detected 275 phosphopeptides which were modulated at least 2-foldbetween human neural stem cells and oligodendrocytes. Among them, 23 phosphoproteins were up-regulated in oligodendrocytesand 79 phosphoproteins were up-regulated in F3 cells.

keywords
Phosphoproteomics, TiO2, SILAC, LTQ-FT MS, Neural Stem Cell (NSC), Oligodendrocyte


Reference

1

Morandell, S. (2006). . Proteomics, 6, 4047-.

2

Reinders, J. (2005). . Proteomics, 5, 4052-.

3

Graves, J. D. (1999). . Pharmacol Ther, 82, 111-.

4

Hunter, T. (2000). . Cell, 100, 113-.

5

Thingholm, T. E. (2009). . Proteomics, 9, 1451-.

6

Manning, G. (2002). . Science, 298, 1912-.

7

Venter, J. C. (2001). . Science, 291, 1304-.

8

Zhang, H. (2002). . J. Biol. Chem, 277, 39379-.

9

Boersema, P. J. (2009). . J. Mass Spectrom, 44, 861-.

10

Ficarro, S. (2003). . J. Biol. Chem, 278, 11579-.

11

Larsen, M. R. (2005). . Mol. Cell Proteomics, 4, 873-.

12

Pinkse, M. W. (2004). . J. Anal. Chem, 76, 3935-.

13

Cao, P. (1999). . J. Chromatogr. A, 853, 225-.

14

Ficarro, S. B. (2002). . Nat. Biotechnol, 20, 301-.

15

Nuhse, T. S. (2003). . Mol. Cell Proteomics, 2, 1234-.

16

Thingholm, T. E. (2009). . Methods Mol. Biol, 527, 47-.

17

Thingholm, T. E. (2008). . J. Proteome Res, 7, 3304-.

18

Mazanek, M. (2007). . Nat. Protoc, 2, 1059-.

19

Swaney, D. L. (2009). . Proc. Nat’l. Acad. Sci. U S A, 106, 995-.

20

Prudhomme, W. (2004). . Proc. Nat’l. Acad. Sci. U S A, 101, 2900-.

21

Schulz, T. C. (2007). . BMC Genomics, 8, 478-.

22

Puente, L. G. (2006). . Mol. Cell Proteomics, 5, 57-.

23

Baharvand, H. (2007). . Stem Cells, 25, 1888-.

24

Kratchmarova, I. (2005). . Science, 308, 1472-.

25

Jensen, S. S. (2007). . Rapid Commun. Mass Spectrom, 21, 3635-.

26

Motoyama, A. (2007). . Anal. Chem, 79, 3623-.

27

Ong, S. E. (2007). . Methods Mol. Biol, 359, 37-.

28

Beynon, R. J. (2005). . Mol. Cell Proteomics, 4, 857-.

29

Bendall, S. C. (2008). . Mol. Cell Proteomics, 7, 1587-.

30

Thingholm, T. E. (2006). . Nat. Protoc, 1, 1929-.

31

Bodenmiller, B. (2007). . Nat. Methods, 4, 231-.

32

Villen, J. (2007). . Proc. Nat’l. Acad. Sci. U S A, 104, 1488-.

33

Yu, L. R. (2007). . Biochem. Biophys. Res. Commun, 356, 942-.

34

Qian, W. J. (2005). . Mol. Cell Proteomics, 4, 700-.

35

Yu, L. R. (2004). . J. Proteome Res, 3, 469-.

36

Jun, A. (2007). . Mol. Cell Proteomics, 6, 1257-.

37

Jorge, I. (2005). . Proteomics, 5, 222-.

38

Ramirez-Boo, M. (2006). . Proteomics, 6, 215-.

39

Hynes, R. O. (1992). . Cell, 69, 11-.

40

Baldin, V. (2000). . Prog. Cell Cycle Res, 4, 49-.

41

Laronga, C. (2000). . J. Biol. Chem, 274, 23106-.

42

van Hemert, M. J. (2001). . Bioessays, 23, 936-.

43

Zhang, L. (1999). . Proc. Nat’l. Acad. Sci. U S A, 96, 8511-.

44

Masters, S. C. (2001). . Mol. Pharmacol, 60, 1325-.

45

Martin, H. (1993). . FEBS Lett, 331, 296-.

46

Berg, D. (2003). . Nat. Rev. Neurosci, 4, 752-.

47

Tak, H. (2007). . Cell Signal, 19, 2379-.

48

Robinson, R. C. (2001). . Science, 294, 1679-.

49

Lee, S. K. (2009). . Proteomics, 9, 4389-.

50

Sato-Yoshitake, R. (1989). . Neuron, 3, 229-.

51

Gordon-Weeks, P. R. (2000). . Microsc. Res. Tech, 48, 63-.

52

Deng, W. (2001). . J. Biochem. Biophys. Res. Commun, 282, 148-.

53

Rajfur, Z. (2002). . Nat. Cell Biol, 4, 286-.

54

Izaguirre, G. (2001). . J. Biol. Chem, 276, 28676-.

55

von Wichert, G. (2003). . EMBO J, 22, 5023-.

56

조건. (2012). A Multidimensional System for Phosphopeptide Analysis Using TiO2 Enrichment and Ion-exchange Chromatography with Mass Spectrometry. Bulletin of the Korean Chemical Society, 33(10), 3298-3302. http://dx.doi.org/10.5012/bkcs.2012.33.10.3298.

57

Trang HuyenTran. (2012). An Application of Electrostatic Repulsion Hydrophilic Interaction Chromatography in Phospho- and Glycoproteome Profiling of Epicardial Adipose Tissue in Obesity Mouse. Mass Spectrometry Letters, 3(2), 39-42. http://dx.doi.org/10.5478/MSL.2012.3.2.39.

Submission Date
2012-12-07
Revised Date
2012-12-24
Accepted Date
2012-12-24
상단으로 이동

Mass Spectrometry Letters