바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN2233-4203
  • E-ISSN2093-8950

Determination of the Concentration and Isotope Ratio of Uranium in Soil and Water by Thermal Ionization Mass Spectrometry

Mass Spectrometry Letters, (P)2233-4203; (E)2093-8950
2014, v.5 no.1, pp.12-15
https://doi.org/10.5478/MSL.2014.5.1.12
Jong-Ho Park (Korea Atomic Energy Research Institute)
Sujin Park (Korea Atomic Energy Research Institute)
Kyuseok Song (Korea Atomic Energy Research Institute)
  • Downloaded
  • Viewed

Abstract

Thermal ionization mass spectrometry (TIMS) was used to determine the concentration and isotope ratio of uraniumcontained in samples of soil and groundwater collected from Korea. Quantification of uranium in ground water samples was performedby isotope dilution mass spectrometry. A series of chemical treatment processes, including chemical separation usingextraction chromatography, was applied to the soil samples to extract the uranium. No treatments other than filtration wereapplied to the groundwater samples. Isotopic analyses by TIMS showed that the isotope ratios of uranium in both the soil andwater samples were indistinguishable from those of naturally abundant uranium. The concentration of uranium in the groundwatersamples was within the U.S. acceptable standards for drinking water. These results demonstrate the utility of TIMS for monitoringuranium in environmental samples with high analytical reliability.

Submission Date
2013-12-05
Revised Date
2013-12-10
Accepted Date
2013-12-10

Reference

1

United Nations. United Nations Scientific Committee on the Effect of Atomic Radiation.

2

U.S. EPA (United States Geological Survey). Integrated risk information system (IRIS) on uranium, soluble salt.

3

USGS (United States Geological Survey). Occurrence of selected radionuclides in ground water used for drinking water in the United States.

4

Kim, B.. (2012). (91-). The Annual Report of Busan Metropolitan city Institute of Health & Environment.

5

Schoenberg, R.. (2005). . Int. J. Mass Spectrom, 242, 257-.

6

Chan, G. C.-Y.. (2006). . Spectrochim. Acta Part B, 61, 642-.

7

Cohen, A. S.. (1992). . Int. J. Mass Spectrom. Ion Process, 116, 71-.

8

Heumann, K. G.. (1995). . Analyst, 120, 1291-.

9

Rubin, K. H.. (2001). . Chemical Geology, 175, 723-.

10

Richter, S.. (2003). . Int. J. Mass Spectrom, 229, 181-.

11

Donohue, D. L.. (1998). . J. Alloy Compd, 271-273, 11-.

12

Stetzer, O.. (2004). . Nuclear Inst. and Methods in Physics Research A, 525, 582-.

13

Kraiem, M.. (2011). . Anal. Chem, 83, 3011-.

14

Aggarwal, S. K.. (1986). . Int. J. Mass Spectrom. Ion Process, 69, 137-.

15

Lee, C.. (2012). . Int. J. Mass Spectrom, 314, 57-.

16

박종호. (2011). A Correction Method for the Peak Tailing Backgrounds for Accurate Isotope Ratio Measurements of Uranium in Ultra Trace Levels using Thermal Ionization Mass Spectrometry. Bulletin of the Korean Chemical Society, 32(12), 4327-4331.

17

Park, J.. . Mass Spectrom. Lett, 1(1), 17-.

18

uki, D.. (2010). . Int. J. Mass. Spectrom, 294, 23-.

19

Bürger, S.. (2010). . Int. J. Mass Spectrom, 294, 65-.

20

Lee, M. H.. (2001). . J. Environ. Radioact, 57, 105-.

Mass Spectrometry Letters