Article Detail

Home > Article Detail
  • P-ISSN 2233-4203
  • E-ISSN 2093-8950

Improvement of Measurement Precisions for Uranium Isotopes at Ultra Trace Levels by Modification of the Sample Introduction System in MC-ICP-MS

Mass Spectrometry Letters / Mass Spectrometry Letters, (P)2233-4203; (E)2093-8950
2016, v.7 no.2, pp.50-54
https://doi.org/10.5478/MSL.2016.7.2.50
Park Ranhee (Korea Atomic Energy Research Institute)
Lim Sang Ho (Korea Atomic Energy Research Institute)
Han Sun-Ho (Korea Atomic Energy Research Institute, University of Science and Technology)
Lee Min Young (Korea Atomic Energy Research Institute)
Park Jinkyu (Korea Atomic Energy Research Institute)
Lee Chi-Gyu (Korea Atomic Energy Research Institute)
Song Kyuseok (Korea Atomic Energy Research Institute)
  • Downloaded
  • Viewed

Abstract

Multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) is currently used in our laboratory for isotopic and quantitative analyses of nuclear materials at ultra-trace levels in environmental swipe samples, which is a very useful for monitoring undeclared nuclear activities. In this study, to improve measurement precisions of uranium isotopes at ultratrace levels, we adopted a desolvating nebulizer system (Aridus-II, CETAC., USA), which can improve signal sensitivity and reduce formation of uranium hydride. A peristaltic pump was combined with Aridus-II in the sample introduction system of MC-ICP-MS to reduce long-term signal fluctuations by maintaining a constant flow rate of the sample solution. The signal sensitivity in the presence of Aridus-II was improved more than 10-fold and the formation ratio of UH/U decreased by 16- to 17-fold compared to a normal spray chamber. Long-term signal fluctuations were significantly reduced by using the peristaltic pump. Detailed optimizations and evaluations with uranium standards are also discussed in this paper.

keywords
MC-ICP-MS, desolvating nebulizer system, peristaltic pump, measurement precision, signal sensitivity, hydride formation


Reference

1

Henry, R.. (2001). . J. Radioanal. Nucl. Chem, 249, 103-.

2

Boulyga, S. F.. (2000). . Int. J. Mass Spectrom, 203, 143-.

3

Donohue D. L.. (1998). . J. Alloy. Compd, 271-273, 11-.

4

Magara M.. (2000). . Appl. Radiat. Isot, 53, 87-.

5

Varga Z.. (2007). . J. Radioanal. Nucl. Chem, 274, 87-.

6

Mayer K.. (2005). . Analyst, 130, 433-.

7

Eppich, G. R.. (2013). . J. Anal. At. Spectrom, 28, 666-.

8

Varga, Z.. (2007). . Anal. Chim Acta, 599, 16-.

9

Turner, S.. (2001). . J. Anal. Atom. Spectrom, 16, 612-.

10

Murphy, J. B.. (2004). . J. Geol. Soc, 161, 243-.

11

Thurber, D. L.. (1965). . Science, 149, 55-.

12

Edwards, R. L.. (1987). . Earth Planet. Sci. Lett, 81, 175-.

13

Andersen, M. B.. (2004). . Int. J. Mass Spectrom, 237, 107-.

14

Ball, L.. (2008). . J. Anal. At. Spectrom, 23, 173-.

15

Weyer, S.. (2003). . Int. J. Mass Spectrom, 226, 355-.

16

Boulyga, S. F.. (2002). . J. Anal. At. Spectrom, 17, 958-.

17

Minnich, M. G.. (1998). . J. Anal. Atom. Spectrom, 13, 167-.

18

Botto, R. I.. (1994). . J. Anal. Atom. Spectrom, 9, 905-.

19

Asfaw, A.. (2006). . J. Anal. Atom. Spectrom, 21, 1027-.

20

Luan, S.. (1992). . J. Anal. Atom. Spectrom, 7, 799-.

21

Björn, E.. (2002). . J. Anal. At. Spectrom, 17, 1390-.

22

Zoriy, M. V.. (2004). . J. Anal. At. Spectrom, 19, 362-.

Submission Date
2016-06-13
Revised Date
2016-06-20
Accepted Date
2016-06-20
상단으로 이동

Mass Spectrometry Letters