바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN2233-4203
  • E-ISSN2093-8950

Differentiation of Glycan Diversity with Serial Affinity Column Set (SACS)

Mass Spectrometry Letters, (P)2233-4203; (E)2093-8950
2016, v.7 no.3, pp.74-78
https://doi.org/10.5478/MSL.2016.7.3.74
Jihoon Shin (Wonkwang University)
Wonryeon Cho (Wonkwang University)
  • Downloaded
  • Viewed

Abstract

Targeted glycoproteomics is an effective way to discover disease-associated glycoproteins in proteomics and serial affinity chromatography (SAC) using lectin and glycan-targeting antibodies shows glycan diversity on the captured glycoproteins. This study suggests a way to determine glycan heterogeneity and structural analysis on the post-translationally modified proteins through serial affinity column set (SACS) using four Lycopersicon esculentum lectin (LEL) columns. The great advantage of this method is that it differentiates between glycoproteins on the basis of their binding affinity. Through this study, some proteins were identified to have glycoforms with different affinity on a single glycoprotein. It will be particularly useful in determining biomarkers in which the disease-specific feature is a unique glycan, or a group of glycans.

Submission Date
2016-09-06
Revised Date
2016-09-22
Accepted Date
2016-09-26

Reference

1

Gajadhar, A. S.. (2014). . Curr. Opin. Biotechnol, 28, 83-.

2

Pandey, A.. (2000). . Nature, 405, 837-.

3

Breuker, K.. (2008). . J. Am. Soc. Mass Spectrom, 19, 1045-.

4

Collier, T. S.. (2008). . Anal. Chem, 80, 4994-.

5

Armirotti, A.. (2009). . Rapid Commun. Mass Spectrom, 23, 661-.

6

McLafferty, F. W.. (2007). . FEBS J, 274, 6256-.

7

Macek, B.. (2006). . Mol. Cell. Proteomics, 5, 949-.

8

Dai, S.. (2008). . J. Proteome Res, 7, 4384-.

9

Benton, H. P.. (2008). . Anal. Chem, 80, 6382-.

10

Getie-Kebtie, M.. (2008). . J. Proteome Res, 7, 3697-.

11

Goudenege, S.. (2007). . Proteomics, 7, 3289-.

12

Cech, N. B.. (2001). . Mass Spectrom. Rev, 20, 362-.

13

Krause, E.. (1999). . Anal. Chem, 71, 4160-.

14

Smith, R. D.. (2000). . Int. J. Mass. Spectrom, 200, 509-.

15

Mellors, J. S.. (2008). . Anal. Chem, 80, 6881-.

16

Gygi, S. P.. (1999). . Nat. Biotech, 17, 994-.

17

Yoo, B.-S.. (2004). . Electrophoresis, 25, 1334-.

18

Thiellement, H.. (2007). Plant Proteomics:Humana Press.

19

Ren, D.. (2003). . J. Proteome Res, 2, 321-.

20

Jung, K.. (2013). . Anal. Chem, 85, 7125-.

21

Cho, W.. (2008). . Anal. Chem, 80, 5286-.

22

Cho, W.. (2010). . J. Proteome Res, 9, 5960-.

23

Drake, P. M.. (2012). . J. Proteome Res, 11, 2508-.

24

Jung, K.. (2008). . J. Proteome Res, 8, 643-.

25

Cho, W.. (2015). . Anal. Chem, 87, 9612-.

26

Dwek, M. V.. (2001). . Proteomics, 1, 756-.

27

Mirzaei, H.. (2005). . J. Chromatogr. B, 817, 23-.

28

Gong, C. X.. (2005). . J. Neural Transm, 112, 813-.

29

Rademacher, T. W.. (1988). . Annu. Rev. Biochem, 57, 785-.

30

Nilsson, C. L.. (2007). Lectins: Analytical Technologies:Elsevier.

31

Julka, S.. (2004). . J. Proteome Res, 3, 350-.

32

Ueda, K.. (2009). . Proteomics, 9, 2182-.

33

Heo, S.-H.. (2007). . Proteomics, 7, 4292-.

34

Larsen, M. R.. (2005). . Mol. Cell. Proteomics, 4, 107-.

35

Issaq, H. J.. (2013). Proteomic and Metabolomic Approaches to Biomarker Discovery:Elsevier.

Mass Spectrometry Letters