Article Detail

Home > Article Detail
  • P-ISSN 2233-4203
  • E-ISSN 2093-8950

Basics of Ion Mobility Mass Spectrometry

Mass Spectrometry Letters / Mass Spectrometry Letters, (P)2233-4203; (E)2093-8950
2017, v.8 no.4, pp.79-89
https://doi.org/10.5478/MSL.2017.8.4.79
Lee Jong Wha (Korea Research Institute of Standard and Science)
  • Downloaded
  • Viewed

Abstract

Ion mobility mass spectrometry (IM-MS) combines the advantages of ion mobility spectrometry (IMS) and MS for effective gas-phase ion analysis. Separation of ions based on their mobilities prior to MS can be performed without a great loss in other analytical figures of merit, and the extra dimension of analysis offered by IM can be beneficial for isomer and complex sample analyses. In this review, basic principles of IMS and IM-MS are described in addition to an introduction to various IMS techniques and commercial IM-MS instruments. The nature of collision cross-section (ΩD), an important parameter determining the transport properties of ions in IMS, is also explained in detail.

keywords
ion mobility spectrometry, ion mobility mass spectrometry, collision cross-section


Reference

1

Paglia, G. (2017). . Nat. Protoc, 12, 797-.

2

Gray, C. J. (2016). . BBA-GEN Subjects, 1860, 1688-.

3

Zheng, X. (2017). . Chem. Sci, 8, 7724-.

4

Hines, K. M. (2017). . Anal. Chem, 89, 9023-.

5

Morsa, D. (2014). . Anal. Chem, 86, 9693-.

6

Kim, K. (2014). . J. Am. Soc. Mass Spectrom, 25, 1771-.

7

Lapthorn, C. (2013). . Mass Spectrom. Rev, 32, 43-.

8

Lanucara, F. (2014). . Nat. Chem, 6, 281-.

9

Bush, M. F. (2010). . Anal. Chem, 82, 9557-.

10

Ruotolo, B. T. (2008). . Nat. Protoc, 3, 1139-.

11

Heck, A. J. R. (2008). . Nat. Methods, 5, 927-.

12

Kurulugama, R. T. (2015). . Analyst, 140, 6834-.

13

May, J. C. (2014). . Anal. Chem, 86, 2107-.

14

Giles, K. (2004). . Rapid Commun. Mass Spectrom, 18, 2401-.

15

Giles, K. (2011). . Rapid Commun. Mass Spectrom, 25, 1559-.

16

Groessl, M. (2015). . Analyst, 140, 6904-.

17

Silveira, J. A. (2017). . Int. J. Mass Spectrom, 413, 168-.

18

Michelmann, K. (2015). . J. Am. Soc. Mass Spectrom, 26, 14-.

19

Silveira, J. A. (2016). . J. Am. Soc. Mass Spectrom, 27, 585-.

20

Cottingham, K. (2003). . Anal. Chem, 75, 435A-.

21

Armenta, S. (2011). . Anal. Chim. Acta, 703, 114-.

22

Cumeras, R. (2015). . Analyst, 140, 1376-.

23

Mason, E. A. (1988). Transport Properties of Ions in Gases:Wiley.

24

Revercomb, H. E. (1975). . Anal. Chem, 47, 970-.

25

Kaur-Atwal, G. (2009). . Int. J. Ion Mobil. Spectrom, 12, 1-.

26

Siems, W. F. (1994). . Anal. Chem, 66, 4195-.

27

May, J. C. (2015). . Analyst, 140, 6824-.

28

Fernandez-Maestre, R. (2017). . Int. J. Mass Spectrom, 421, 8-.

29

Mason, E. A. (1958). . Ann. Phys, 4, 233-.

30

Siems, W. F. (2012). . Anal. Chem, 84, 9782-.

31

Wyttenbach, T. (2013). . Anal. Chem, 85, 2191-.

32

Bleiholder, C. (2015). . Analyst, 140, 6804-.

33

Stow, S. M. (2017). . Anal. Chem, 89, 9048-.

34

May, J. C. (2017). . Anal. Chem, 89, 1032-.

35

Lalli, P. M. (2013). . J. Mass Spectrom, 48, 989-.

36

Davidson, K. L. (2017). . Anal. Chem, 89, 2017-.

37

Dwivedi, P. (2006). . Anal. Chem, 78, 8200-.

38

Ujma, J. (2016). . Anal. Chem, 88, 9469-.

39

Wyttenbach, T. (1997). . J. Am. Soc. Mass Spectrom, 8, 275-.

40

Mesleh, M. F. (1996). . J. Phys. Chem, 100, 16082-.

41

Young, M. N. (2017). . J. Am. Soc. Mass Spectrom, 28, 619-.

42

Bleiholder, C. (2015). . Anal. Chem, 87, 7196-.

43

Kim, H. I. (2005). . J. Phys. Chem. A, 109, 7888-.

44

Eiceman, G. A. (2003). . Anal. Chim. Acta, 493, 185-.

45

Laszlo, K. J. (2017). . J. Phys. Chem. A, 121, 7768-.

46

Shvartsburg, A. A. (1998). . J. Chem. Phys, 108, 2416-.

47

von Helden, G. (1993). . J. Phys. Chem, 97, 8182-.

48

Boschmans, J. (2016). . Analyst, 141, 4044-.

49

Seo, J. (2016). . Phys. Chem. Chem. Phys, 18, 25474-.

50

Siems, W. F. (2016). . Analyst, 141, 6396-.

51

Fernandez-Maestre, R. (2010). . Analyst, 135, 1433-.

52

Paglia, G. (2015). . Anal. Chem, 87, 1137-.

53

Paglia, G. (2014). . Anal. Chem, 86, 3985-.

54

Marchand, A. (2017). . Anal. Chem, 89, 12674-.

55

Pringle, S. D. (2007). . Int. J. Mass Spectrom, 261, 1-.

56

Kirk, A. T. (2017). . Anal. Chem, 89, 1509-.

57

Shvartsburg, A. A. (2010). . Anal. Chem, 82, 8047-.

58

D'Atri, V. (2015). . J. Mass Spectrom, 50, 711-.

59

Lee, J. W. (2015). . Analyst, 140, 661-.

60

Shvartsburg, A. A. (1996). . Chem. Phys. Lett, 261, 86-.

61

Alexeev, Y. (2014). . J. Phys. Chem. A, 118, 6763-.

62

Shvartsburg, A. A. (2000). . J. Chem. Phys, 112, 4517-.

63

Anderson, S. E. (2012). . Int. J. Mass Spectrom, 330-332, 78-.

64

Bleiholder, C. (2013). . Int. J. Mass Spectrom, 354-355, 275-.

65

Bleiholder, C. (2013). . Int. J. Mass Spectrom, 345-347, 89-.

66

Bleiholder, C. (2011). . Int. J. Mass Spectrom, 308, 1-.

67

Kim, H. (2008). . Anal. Chem, 80, 1928-.

68

Kim, H. I. (2009). . Anal. Chem, 81, 8289-.

69

Campuzano, I. (2012). . Anal. Chem, 84, 1026-.

70

Siu, C. -K. (2010). . J. Phys. Chem. B, 114, 1204-.

71

Lee, J. W. (2017). . Analyst, 142, 4289-.

72

Lapthorn, C. (2015). . Analyst, 140, 6814-.

73

Lee, J. W. .

74

Thalassinos, K. (2004). . Int. J. Mass Spectrom, 236, 55-.

75

Shvartsburg, A. A. (2008). . Anal. Chem, 80, 9689-.

76

Giles, K. (2010). . Int. J. Mass Spectrom, 298, 10-.

77

Bush, M. F. (2012). . Anal. Chem, 84, 7124-.

78

Thalassinos, K. (2009). . Anal. Chem, 81, 248-.

79

Mortensen, D. N. (2017). . J. Am. Soc. Mass Spectrom, 28, 1282-.

80

Fernandez-Lima, F. (2011). . Int. J. Ion Mobil. Spectrom, 14, 93-.

81

Silveira, J. A. (2014). . Anal. Chem, 86, 5624-.

82

Hernandez, D. R. (2014). . Analyst, 139, 1913-.

83

Swearingen, K. E. (2012). . Expert Rev. Proteomics, 9, 505-.

84

Schneider, B. B. (2016). . Mass Spectrom. Rev, 35, 687-.

85

Sinatra, F. L. (2015). . Anal. Chem, 87, 1685-.

86

May, J. C. (2015). . Anal. Chem, 87, 1422-.

87

Dodds, J. N. (2017). . Anal. Chem, 89, 12176-.

88

Hoaglund, C. S. (1998). . Anal. Chem, 70, 2236-.

89

Ibrahim, Y. M. (2016). . Anal. Chem, 88, 12152-.

90

Keelor, J. D. (2017). . Anal. Chem, 89, 11301-.

91

김준곤. (2016). Stabilization of Compact Protein Structures by Macrocyclic Hosts Cucurbit[n]urils in the Gas Phase. Mass Spectrometry Letters, 7(1), 16-20. http://dx.doi.org/10.5478/MSL.2016.7.1.16.

92

Hoaglund-Hyzer, C. S. (2002). . Anal. Chem, 74, 992-.

93

Fernandez-Lima, F. A. (2009). . Anal. Chem, 81, 618-.

94

Tang, K. (2005). . Anal. Chem, 77, 3330-.

95

Ibrahim, Y. M. (2015). . Int. J. Mass Spectrom, 377, 655-.

96

Baker, E. S. (2007). . J. Am. Soc. Mass Spectrom, 18, 1176-.

97

Kelly, R. T. (2010). . Mass Spectrom. Rev, 29, 294-.

98

Ibrahim, Y. (2006). . J. Am. Soc. Mass Spectrom, 17, 1299-.

99

Morsa, D. (2011). . Anal. Chem, 83, 5775-.

100

Merenbloom, S. I. (2012). . J. Am. Soc. Mass Spectrom, 23, 553-.

101

Ridgeway, M. E. (2015). . Analyst, 140, 6964-.

102

Jeanne, K. (2017). . Anal. Chem, 89, 11787-.

103

Fernandez-Lima, F. A. (2011). . Rev. Sci. Instrum, 82, 126106-.

104

Liu, F. C. (2016). . Analyst, 141, 3722-.

105

Meier, F. (2015). . J. Proteome Res, 14, 5378-.

106

Glaskin, R. S. (2013). . Anal. Chem, 85, 7003-.

107

Merenbloom, S. I. (2009). . Anal. Chem, 81, 1482-.

108

Deng, L. (2016). . Anal. Chem, 88, 8957-.

109

Deng, L. (2017). . Anal. Chem, 89, 4628-.

110

Giles, K. (2017). 65th Annual American Society for Mass Spectrometry Conference. www.waters.com/posters.

Submission Date
2017-11-29
Revised Date
2017-12-19
Accepted Date
2017-12-19
상단으로 이동

Mass Spectrometry Letters